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Abstract. Implementing innovative technologies is a key factor in improving the quality of education in the
contemporary educational process. The research aims to research and analyze the implementation of neural networks in
teaching physics in higher education. The main focus is on analyzing the efficiency and potential benefits of using contemporary
artificial intelligence (Al) technologies for improving the learning process. Various approaches were used in the study to
employ neural networks to create adaptive educational systems, personalized training programs, and virtual laboratories.
Particular emphasis was given to the effects of these technologies on students’ academic performance, involvement in the
learning process, and comprehension of complex physical concepts. The research methodology includes a review of existing
literature, experiments using neural networks in the teaching process, and a survey taken from students and teaching staff.
During the experiments, various neural network models, namely recurrent neural networks (RNN) and deep neural networks
(DNN), are employed to tackle issues in predicting academic performance, personalized education, and automatically
generating training materials. The research results reveal that implementing neural networks in teaching physics can
significantly raise the teaching quality, foster a tailored approach to each student, and facilitate the teachers’ routine tasks.
Moreover, Al can stimulate students’ interest in learning physics and related disciplines due to its interactivity and adaptability
in the educational process. Implementing neural networks in teaching physics in higher education offers a promising direction,
which requires further study and development.

Keywords: neural networks, process, adiabatic process, virtual laboratory, experiment, technology,
prediction, artificial intelligence.

Introduction

For the last decade, information technologies have significantly changed approaches to
education, offering new opportunities in teaching and learning. One of the most promising
directions is using neural networks, which have already demonstrated their efficiency in various
fields, including medicine, economics, and art as well. In the context of higher education neural
networks can be an innovative solution in improving teaching and acquiring learning materials.

Contemporary Al technologies are spreading quickly in all spheres of life, including
education. In recent years, there has been a significant interest in implementing neural networks
in educational processes. Physics, as one of the fundamental sciences, presents a scope where using
neural networks can significantly enhance the quality and learning efficiency (Khatib O., Ren S.,
Malof J., and Padilla W.J.) [1].

There are numerous challenges in teaching physics at universities, including the
complexity of the teaching materials, the need for an individual approach to students, and limited
time for lessons. Traditional teaching methods are not always capable of meeting the needs of all
students, which can result in losing interest in lessons and deteriorating academic performance
(Iten R., Metger T., Wilming H., del Rio L., Renner R.) [2].

Neural networks, a powerful tool for data analysis and prediction, offer new opportunities
for dealing with the issues. They are capable of adapting to the individual characteristics of each
student, automating grading, and providing interactive learning materials. This makes the learning
process more flexible and effective (Cuomo S., Schiano Di Cola V., Giampaolo F., Rozza G.,
Raissi M., Piccialli F.) [3].

Traditionally, teaching physics at university involves explaining complex concepts and
theories, requiring students to possess a high level of abstract thinking and analytical skills.
Conventional teaching methods, such as lectures and laboratory work, do not often provide enough
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involvement and comprehension from students. Implementing neural networks in the educational
process can assist in overcoming the issues by creating adaptive and interactive training materials
(Raissi M., Perdikaris P., and Karniadakis G.E.) [4].

The research aim is to analyze and evaluate the implementation of neural networks in
teaching physics in higher educational institutions (HEI). The study considers various methods of
integrating neural networks in the teaching process, their influence on student’s academic
performance and motivation, and further perspectives on using the technologies in education
(Nguyen H., Widrow B.) [5].

The research is relevant due to a growing interest in innovative teaching methods and
requirements for improving education quality. The research results can serve as a basis for developing
new educational programs, contributing to deeper and more effective physics learning.

Literature review

In recent years, there has been a growing interest in employing neural networks in educational
processes, including in teaching natural sciences such as physics. Current studies present a variety of
approaches to integrating technology into training programs, highlighting their potential for improving
education quality and enhancing grasping of complex theoretical concepts.

Many studies focus on the widespread use of neural networks in educational processes. Fawad
Naseer and Muhammad Nasir Khan (2024) aimed at creating adaptive educational systems. They note
such systems can adapt to the individual needs of students, providing a personalized approach to learning
(Hernandez-Blanco A., Herrera-Flores B., Tomas D., and Navarro-Colorado B.) [6]. The research of
Arman Zakaryan (2021) shows that neural networks can be used to build interactive simulations that
significantly enhance students’ engagement and their comprehension of the materials.

The issue of adaptive learning with neural networks receives considerable attention. Martin
Erdmann and Jonas Glombitza (2021) present the experiment results for implementing neural networks
to create personalized learning plans in physics (Chaves e Silva L., Alvares de Carvalho César Sobrinho
A.) [7]. The authors conclude that such methods contribute to improving students” academic performance
and increasing motivation. Devendra Singh Chaplot and Eunhee Rhim (2016) discuss the use of artificial
intelligence and neural networks to develop adaptive educational systems that not only adapt to students’
knowledge levels but also recommend optimal learning trajectories.

The literature is particularly focused on studies of using neural networks to develop virtual
laboratories. Gissel Velarde (2019) explores the implementation of neural networks for modeling
physical processes in virtual laboratories that enable students to conduct experiments in an
interactive environment. S.M. Dewi and G. Gunawan (2020) emphasize that such virtual
laboratories not only enhance theoretical material comprehension but also develop practical skills
in students (Naseer F., Khan M.N., Tahir M., Addas A., and Aejaz S.M.H.) [8].

Evaluating the influence of neural networks on educational processes is a crucial aspect.
Zhiyi Xu (2024) analyzes the effect of implementing artificial intelligence and neural networks on
students’ learning outcomes in physics in their studies. The authors conclude that integrating the
technologies not only improves academic performance but also increases interest in students
learning physics (Vadyala S.R., Betgeri S.N.) [9].

The literature review shows that neural networks possess significant potential for
improving physics teaching at universities. Integrating technologies with educational processes
facilitates improving education quality, individual approaches to students, and improving their
academic performance. Nevertheless, further research is required to optimize using neural
networks and evaluate their long-term impacts on learning processes.

Materials and methods

The following resources were used to conduct and analyze the use of neural networks in
teaching physics at higher education:

1. Computer hardware: personal computers and servers for developing and testing neural
network models.
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2. Software:

- Python with the libraries TensorFlow and Keras for creating and training the neural networks.

- PyCharm for documenting and analyzing experiments.

- Data visualization tools (Matplotlib, Seaborn) for analyzing results.

3. Data:

- Physics data sets, including theoretical and practical assignments, laboratory tasks, and
test questions.

- Historical data on students’ academic performance to assess the effects of new methods
on the educational process.

The following methods were applied during the research:

Network design: Several types of neural networks were designed, including fully
connected neural networks (FCN) for training the adaptive system and convolutional neural
networks (CNN) for visualization and analyzing physical processes (Zakaryan A.) [10].

Network training: For training neural networks, historical data of students’ academic
performance and synthetic data, generated based on theoretical and practical materials on
physics, were used.

Hyperparameters: Network hyperparameter configurations, such as the number of layers, the
number of neurons in each layer, activation function, and training speed, were performed using grid
search and a random search algorithm (Erdmann M., Glombitza J., Kasieczka G., and Klemradt U.) [11].

Academic performance evaluation: Students’ academic performance was analyzed through
the results of tests, laboratory assignments, and examinations. The analysis took into account the
time required for students to complete assignments and their engagement in the educational
process (Arias Chao M., Kulkarni C., Goebel K., and Fink O.) [12].

Feedback analysis: Surveys and interviews were conducted with teaching staff and students to
collect qualitative data regarding their perceptions of the convenience of using the new technologies.

Virtual laboratories and simulations:

Modeling the physical process: Convolutional neural networks were used to develop interactive
simulations and virtual laboratories for studying adiabatic processes and wave interference, enabling
students to visualize and analyze complex physical phenomena (Davis J.P., Price W.A.) [13].

Testing and validation: Virtual laboratories and simulations were tested using real data and
in the classroom to evaluate their reliability and educational value.

Model assessment and adjustment:

Assessment metrics: accuracy metrics, median absolute error (MAE), and mean squared
error (MSE) were employed to evaluate the model quality. The use of accuracy metrics, median
absolute error (MAE), and mean squared error (MSE) in the research and analysis of using neural
networks in physics teaching at university provides valuable tools for evaluation and educational
process optimization (Du T.) [14].

The accuracy metric allows us to assess the extent to which neural networks can acutely
identify students’ responses and predict their test performance. This metric is important for
understanding the model’s general efficiency in educational contexts.

The median absolute error (MAE) provides a clear view of the average level of model error
in predicting students’ performance and understanding of various physical concepts. A low value
of MAE indicates that model predictions are close to the real results, which enables us to use this
metric to analyze certain aspects of the educational process.

The mean squared error (MSE), due to its property to magnify the impact of big mistakes, assists
in identifying the areas where the model’s predictions differ significantly from the actual data. This is
especially beneficial for adjusting models and approaches to teaching, allowing students to focus on
difficult tasks and improving their comprehension (Ukoh E.E., Nicholas J.) [15].

These metrics, taken together, contribute to deep analysis, allowing teaching staff to not
only assess current results but also develop more effective teaching strategies, resulting in
improved physics education quality.
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Results and discussions

1. Enhancing personalized learning

The application of neural networks in learning allowed for significant personalization of
the learning process. An Al-based system can adapt to the individual needs of every student,
analyze the process, identify weaknesses, and offer relevant learning materials and assignments.
This led to more effective learning and improved students’ motivation.

2. Optimizing the evaluation process

Neural network-based systems could significantly speed up the process of assessing
students’ knowledge. Automatic assessment of homework, tests, and laboratory assignments
allowed teachers to free up time for more in-depth interaction with students. Moreover, it reduced
subjectivity and improved objectivity in assessing.

3. Improving students’ academic performance

The following table displays the results of experiments conducted during the data analysis.
The comparison of control and experimental groups of students shows the efficiency of
implementing neural networks in teaching and learning (Chaplot D.S., Rhim E., Kim J.) [16].

The experiment revealed that the experimental group using a neural network-based
learning system demonstrated higher results than the control group using the traditional method.

Differences in results show that neural networks can be effective equipment in educational
processes, contributing to the improvement of the assimilation of complex concepts and improving
the overall level of student performance. The results highlight the significance of incorporating
modern technologies into training programs and open up perspectives for further research and
development of adaptive educational systems applicable across diverse educational disciplines.

Guided by the practical data presented in the table, the following results in the graph were
obtained through the PyCharm programming language. The graph shows the distribution of
improved scores for the control and experimental groups, as well as the comparison of the mean
values of the improvements by group.

Score Improvement Distribution Average Score Improvement by Group

3 Experimental Group 124
3 control Group

score_improvement
s o o
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g0 —® Post-test Score
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; P ~ P @ P2 P P % % % 1%
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Figure 1 — Comparative analysis of students’ academic performance with traditional methods
and an adaptive neural network-based educational system

The data analysis revealed that students taught with the neural network-based educational
system shown in Figure 1 showed higher results than students taught with traditional methods.
This is because artificial intelligence is capable of providing timely feedback and adapting to
educational processes tailored to the specific needs of each student (Humam K., Majeed A.L.-C.,
Hussein A.M.A., Apoki U.C.) [17].
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4. Reducing the teaching staff workload

Automating teacher routines such as checking work and preparing curricula enabled
teaching staff to concentrate on creative and pedagogical aspects of their work. This also
contributed to improving teaching quality and increasing teachers’ satisfaction with their work.
Moreover, the implementation of an automated system for analysis and planning facilitated the
individual approach to student learning, resulting in a more accurate educational trajectory and an
improvement in student performance. As a result, teachers could spend more time developing
innovative teaching methods and creating a conducive learning environment.

5. Improving interactivity and engagement

The implementation of neural networks allowed for the creation of more interactive and
entertaining educational materials. Multimedia presentations, virtual laboratories, and simulations
assisted in making the learning process more dynamic and interesting, which in turn increased
student engagement. Neural networks’ adaptive capabilities enable the customization of training
materials to individual student needs and knowledge levels, leading to a deep understanding of
complex topics (Nwankwo M.C.) [18].

”
X Figure 1 — (m] X

Pressure (atm)
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Figure 2 — The result of the adiabatic process virtual work

Figure 2 displays the adiabatic process’s virtual work using neural networks. The first step
is to collect data on system parameters, such as pressure, volume, and temperature, as shown in
the graph. Data obtained from experiments and simulations is cleaned and normalized for neural
network improvements. This includes removing missed values, normalizing the value range, and
separating data into training and test sets. As the image is three-dimensional, multilayer perceptron
(MLP) neural network architecture is employed during the analysis. The model is trained on
training data sets using algorithms of backpropagation and gradient descent. During the training
process, the neural network adjusts its weights to minimize the prediction errors. After training,
the model is tested on a test dataset, prediction accuracy is assessed, and if necessary, the model
is refined by changing hyperparameters and architecture. The trained model is used for predicting
system parameters. In this case, the model can predict the pressure based on the initial value of
volume and temperature (Abaniel A.) [19].

The prediction results are analyzed and compared with actual data sets or theoretical
models. This helps to determine the accuracy and reliability of neural networks. The prediction
results are visualized for illustration. In this case, a 3D chart can be used to demonstrate pressure
dependence on temperature and volume. This approach enables students to comprehend the
utilization of neural networks in the analysis and prediction of complicated systems, as well as
visualize the results for a better understanding of processes. It is also necessary to consider

23



O/~ ISSN1813-1123 BECTHHMK XKV Ne4(117)/2025 ~ _ ~~._ €,

thermodynamic principles and relevant formulas to describe the neural network-based adiabatic
process. The adiabatic process is characterized by that there is no heat exchange with the
environment. The main formula for the adiabatic process is the following:

PVY = const (1)
Where:
P — pressure,
V — volume,

Y — adiabatic index (heat capacity ratioi—p).

Use of neural networks

1. Formula for predicting the pressure with neural networks:

P=fW,T) )
Where:
P — pressure (output value),
V' — volume (input value),
T — temperature (input value),
f — function, trained neural network
2. Normalizing input data:
To improve the model training, data is often normalized:

y _V-uv
V' = v 3)
r __I—H
T = — 4
Where:
uV and oV — average value and standard volume deviation,

- uT u oT — average value and standard temperature deviation

3. Neural network design:
The use of neural networks possesses the following structure:

P = W; *relu(W, *x relu(W; = [V',T'] + by) + b,) + bs (5)
Where:
w,, W,, W, — layer weight,
by, b,, b; — layer displacement,
relu — activation function ReLU (Rectified Linear Unit).

Formulas for training models

1. Loss function:
The loss function is used to train models, such as mean square error:

1 2
Loss = ;Z?:l(Ppred,i — Pirue,;) ®)

Where:

Pyrea,; — predicted pressure,
Pirye,; — actual pressure

n — number of samples

2. Updating the weights using gradient descent:
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dLoss

M w, (7

Wy = W -

Where:
n — training speed,

6;;’;5 — the gradient of the loss function with the weights.
J

The formulas and approaches given allow students to understand how neural networks can
be used for modeling adiabatic processes and predicting system parameters.

The described processes (1) — (7) illustrate the utilization of neural networks in modeling
and predicting parameters in an adiabatic process, offering students a clear outline for
implementation (Table 1).

Table 1 — The implementation of the adiabatic process with neural networks

Collecting data on system parameters (pressure, volume. temperature)

) 4
Data normalization to improve neural network performance.

v

Defining the neural network architecture and comniling the model.

v

Training a model on training data

v
Evaluating the accuracy of the model based on test data
v
Using the model to predict new pressure values

v

Visualization of predicted data for clarity and analysis

1. Data collection and preprocessing

Data collection and pre-processing include several key steps. First, data is collected about
system parameters, such as pressure, volume, and temperature. Then the data is cleared, including
removing missed values and checking for anomalies. Following this, data is normalized to improve
the model training process, which results in more accurate results.

2. Creating and training neural networks

Creating and training neural networks consists of several steps. First, the neural network
design is determined, which will be used for taking assignments. Then data is divided into training
and test sets to check the model. Then the model is compiled and trained on training data to achieve
optimal performance.

3. Evaluation and testing of the model

The evaluation and testing of the model contain the following steps: First, the model is
evaluated on the testing data to check its capability to make an accurate prediction. Then an
analysis for accuracy and prediction errors is conducted to determine strengths and weaknesses of
the model and identify possible areas for improvement.

4. Using the model for prediction

Using the model for prediction includes entering new data into the system for obtaining prediction
results. In particular, the model is used for volume value prediction based on entered parameters.

5. The result visualization
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The process of visualizing the results involves creating graphs and diagrams that illustrate various
system parameters. It not only enables us to understand the model operation better but also compares
predicted values with actual data, which helps to assess the accuracy and prediction efficiency.

The process of developing and implementing models based on neural networks for
predicting the pressure value involves several key steps, commencing from data collection and
preprocessing to the result visualization. During data collection and preprocessing, the focus is
paid to the quality of output data that allows for improvement of the model process and provides
more accurate predictions. Creating and training the neural networks is aimed at optimizing the
model design and its training on appropriate datasets to obtain high productivity.

The model’s evaluation and testing enable the identification of its accuracy and potential
areas for improvement. The model is then used for predicting new data, which demonstrates its
practical value. Visualizing results through graphs and diagrams not only helps to better
understand the model operation but also provides an illustrated comparison of predicted values
with actual data, which confirms the efficiency and accuracy of developed systems. This holistic
approach to neural network design and use contributes to the development of reliable and accurate
models for prediction and system parameter analysis.

The description of the next process under consideration is the result of the interference
performed by the students of the virtual laboratory demonstrated in the following figures.

Interference —a phenomenon in which two or more waves overlap each other, creating new
waves with excellent amplitude depending on the phase shift between the initial waves.

& Figure 1 - o X A Figure 1 - o X

A€ Q= X pane=5.0000, y=-0.2069, z=-1.3555 A€ Q= elevation=94°, azimuth=-82", roll=0"

Figure 3 — Interference process from the back Figure 4 — Interference process from the
side top side

The interference process illustrated in Figures 3 and 4 show the view from the back and
top sides, obtained thanks to visual works made by neural networks.

Overlapping waves lead to new wave formation with changed amplitudes depending on
the phase shift of the initial waves. A neural network-based virtual analysis of this phenomenon
undergoes several stages, as shown below.

1. Data collection

First, it is necessary to collect data about the wave process parameters that describe the
amplitudes and wave phases at different points in space.

2. Data pre-processing

It is necessary to prepare data for use in neural networks. This includes normalization, data
scaling, and splitting into training and test samples.

3. Creating and training the neural networks.

A neural network will be used for predicting the interference results based on input data
(amplitude and wave phase).
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Detailed description of the process

4. Using the model for prediction description of the steps

1. Data collection: Generating or collecting data regarding wave parameters, such as
amplitude and phase.

2. Data pre-processing: normalizing and data scaling, splitting into training and test samples.

3. Creating the model: identifying neural network design, and model compilation.

4. Training the model: Training the model on interference data

5. Evaluating the data: model accuracy assessment on test datasets

6. Prediction: Using the model for predicting interference of new data

7. Visualization: Visualizing predicted data for comparison with the initial data

Technology aids students in comprehending the use of neural networks for wave
interference analysis and prediction, offering a clear scheme and code examples for practical
application. This contributes to in-depth knowledge of neural networks and their implementation
in physics assignments, as well as developing programming and modeling skills for intricate
phenomena. Additionally, this approach enables students to experiment with various model
parameters and observe how such changes impact the results, which strengthens their
understanding of both interference principles and machine learning methods.

Adjustments and improvements of models: Regularization methods such as dropout and
L2-regulation were used to prevent retraining. Based on the obtained data, reassessment, and
model adjustment were periodically carried out.

The use of neural networks in teaching physics at university showed a significant
advantage, including adaptivity and personalization of the learning process. Methods applied in
the research allowed for the development and testing of effective educational tools that can be
integrated with existing curricula to improve education quality.

6. Expanding the distance learning opportunities

Neural network-based technologies demonstrated their high efficiency in distance learning,
especially recently relevant due to global changes in the educational sphere. The technologies
allowed for the creation of interactive and adaptive learning systems, which could compensate for
a lack of personal contact between teachers and students. Artificial intelligence-based systems not
only automate checking and assessing the assignments but also recommend personalized learning
materials tailored to the individual needs of each student. The interaction became more dynamic
and continuous, which helped to maintain a high level of engagement and motivation for students
even in a remote format. Using neural networks in teaching showed its value in improving the
quality of education, reducing barriers related to the physical absence of a teacher, and providing
students with the necessary support at every stage of their studies.

7. Implementing the innovative teaching methods

The use of artificial intelligence in teaching physics allowed for the implementation of
innovative teaching methods, such as gamification and adaptive learning. This not only made the
learning process more engaging but also facilitated a more in-depth exploration of topics studied,
stimulating their interest in subjects.

The research revealed that implementing neural networks in teaching physics at university
has numerous benefits, including enhancing learning personalization, assessment optimization,
improvement of students’ academic performance, reducing teachers’ workload, improving
interactivity and engagement, increasing distance learning opportunities, and implementing
innovative teaching methods. The results reveal AI’s significant potential in education and the
necessity of further development and implementation of such technologies.

Discussion

The research results show that implementing neural networks in teaching physics at
universities can significantly improve education quality. Neural networks enable the creation of
adaptive educational systems that adapt to the individual needs of students, providing personalized
training materials and assignments.
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One of the key aspects of our research was to explore the effects of neural networks on
students’ academic performance. Data analysis showed that students who used neural network-
based adaptive educational systems demonstrated higher academic results than the control group.
This is because such systems allow students to study the material at a convenient pace and focus
on the topics that cause the most difficulty.

Personalized learning is one of the benefits of implementing neural networks. Our study
revealed that neural network-based systems can adapt training materials in real time, based on the
midterm test results and students’ engagement. This allows students to get more targeted assistance
and acquire complex concepts effectively.

Creating visual laboratories and simulations based on neural networks proved to be an
effective tool to improve understanding of complex physical processes. The virtual laboratories
enabled students to conduct experiments and visualize results in an interactive environment, which
significantly improved their involvement and interest in learning physics. However, implementing
such technologies requires significant development and testing efforts, as well as the availability
of appropriate infrastructure.

Implementing neural networks for assessing students’ knowledge and providing feedback
has also shown positive results. These systems assist in identifying the strengths and weaknesses
of each student and offering individualized recommendations for improving their academic
performance. However, for the full implementation of these technologies, there is a need for further
research and improvement of evaluation algorithms to provide reliability and accuracy.

Despite the positive results, our research revealed several issues and limitations. Firstly,
implementing neural networks in the educational process requires significant resources and time
to create and install the system. Secondly, not all teaching staff and students are ready to use new
technology, which requires additional effort of training and adaptation. Thirdly, there is a need for
constant updating and maintaining the developed system so that it remains relevant and effective.

Our research opens up wide perspectives for further research in using neural networks in
education. It is important to study and develop new methods and approaches aimed at improving
adaptivity and personalization of educational systems. Particular emphasis should be given to
integrating neural networks with other innovative technologies, such as augmented and virtual
reality, for creating more interactive and engaging learning materials.

The use of neural networks in teaching physics at universities showed its efficiency in
improving education quality and students’ academic performance. Despite the existence of issues
and limitations, the advantages of such systems significantly outweigh their potential drawbacks.
It is also important to study and develop this direction to provide modern and quality education
for future generations of students.

Conclusion

During the research, opportunities for implementing neural networks in teaching physics
in higher education were considered. The results demonstrate significant advantages of using this
technology to improve educational processes.

The main outcomes of the research include the following aspects:

1. Improving academic performance: students who used neural network-based adaptive
educational systems showed high results in education. This is due to each student's individual
approach and opportunities to focus on complex, hard-to-understand topics.

2. Personalized learning: Neural networks allow the creation of personalized learning
materials, adapted to the needs and knowledge levels of each student. This significantly improves
the perception and material assimilation.

3. Interactive virtual laboratories: neural network-based virtual laboratories and
simulations provide students with opportunities to conduct experiments and visualize the results
in an interactive environment. This results in an in-depth understanding of complex physical
processes and enhances the interest in learning the subject.
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4. Precise knowledge assessment: the use of neural networks for students’ knowledge
assessment and providing feedback allows identifying the strong and weak points, which
contributes to improving students’ academic performance.

Despite the identified problems and limitations, such as the necessity of resources for developing
and implementing systems, as well as a need for training teaching staff and students on new technologies,
the research revealed that the advantages of neural networks outweigh the challenges.
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JKOFAPBI OKY OPBIHIAPBIHJIA ®U3NKAHBI OKBITYJA HEMPOHIBIK
KEJLJIEPAI KOJJAHYIbI 3EPTTEY KOHE TAJIJAY

Bezanues EJKL Cetimmypamog AJK.Y, Beiicenosa C.H.*"

YKoprwim ama amwimoaevr Koizvuiopoa ynusepcumemi, Kazaxcman Pecnybnuxacul, Koizviiopoa k.
%[ JKancyeipoe amuinoazwl Kemicy ynueepcumemi, Kazaxcman Pecny6auxace, Tanovigopean K.
“e-mail: puntik_92@mail.ru, angisin_@mail.ru, samal2903@bk.ru

Anoamna. UHHOBAYUANBIK MEXHOIOSUANAPOLL  eH2i3y Kazipel Oinim 6epy npoyecinde OIiM canacolk
apmmuipydagnl He2izzi hakmop 6ovin mabwiiadsl. 3epmmeyoin MAKCamvl — HCO2APbL OKY OPLIHOAPLIHOA PUSUKAHBI
OKbIMYOa HetlpOHObIK dceinepoi KoN0anyovl 3epmmey dcone manoay. Hezizei nasap xasipei scacanovl uHmeniekm
(PKU) mexnonocusnapvii 0Ky Npoyecit HcaKcapmy Yulii KoA0aHyObly MuiMOiniei Men MyMKiH apmblKUibLIbIKMApPbiH
manoayza ayoapwsiizan. 3epmmey 0OaApbiCbIHOA HeUpOHObIK dfceninepli OeuimOencen 6Oinim bepy cylienepiH,
NepPCOHANU3AYUANAHEAH OKY 6a20aPIAMANAPBIH JHCIHE BUPIYALObl 3ePMXAHANAPObL KYPY VUMIH KOLOAHYObIY JPMYPIi
macindepi  naudanauviiovl. ApHaiivl  Hazap  OY1  MEXHOIOSUAAAPOLIH — CMYOeHmmepoiy  aKaAOeMUsIbIK
Kepcemkiumepine, 0Ky npoyecine KamvlCyblHaA HCIHE KYpPOei QU3UKALbIK Y2biMOapObl mycikyine acepine OONIHOL.
3epmmey 20icmemeci asvimoazel 20eOuemmepOi WONY, HEUPOHOLIK Jicelliiepdi 0Ky npoyecinoe KoaoaHy
9KCnepuMeHmmepi  JicoHe — CMyOeHmmep  MeH — OKblMYWbLIApOaH — alblHRAH — CAYAIHAMARA — He2i30elceH.
Oxcnepumenmmep Kezinoe apmypai HeUpOHObIK JHceli MOOenvboepi, aman aumxanoa pexyppenmmi HetupoHObIK
aceninep (RNN) owcone mepey  mneiuponowix  oceninep (DNN), axademusinoly kepcemkiwimepoi 6oadicay,
NePCOHANUZAYUANAHEAH OKBINY HCIHE OKY MAMEPUANOapblH agmoMammsl mypoe JHcacay Macenenepin weuty yuin
KONOauwliovl. 3epmmey Hamuoicenepi HeupoHObIK diceninepoi u3uKanvl OKbIMYyOa KOAOAHY OKbIMYObIH CANACHIH
€0ayip apmmulpa ANAMmbIHbIH, 2P CMYOEHMKe JiceKe MICIL dHcacayea bIKnanl ememinin Jcone OKbImYubLIapObll
PpymuHOiKk manceipmanapvin  scenindememinin  kepcemmi. Convimen xamap, KU oxy npoyecinde eo3apa
apexemmecmix nen Oeuimoeniuimix apxacvlHoa cmyoenmmepoiy Qusuxka JcaHe OAlIAHbICMbBL NaHOepee
KbI3bI2YULbLIbIZbIH apmMmblpa anaodvl. XKoeapvl 0Ky opblHOApbIHOA PU3UKAHBL OKbIMYOA HeUPOHObIK Jiceninepoi eHzizy
— api Kapati 3epmmeyoi JcaHe 0aMblmyobl Kajicem ememin nepcnekmusavl 6ageim 60.1vin maodwvLIaAowl.

Kinm ce30ep: netiponouix diceninep, npoyecc, aouadbammsix npoyecc, Upmyanovl 3epmxana, IKCRepumMeHn,
mexHonozus, 6012cam, Jcacanobl UHMeNNeKm.

UCCJEIOBAHUE U AHAJIN3 MIPUMEHEHUSA HEMPOHHBIX CETEN
B IPEIIOJABAHUU ®U3UKU B BY3AX

Bezanuee EJK.2, Cetimmypamos A.JK., beiicenosa C.H.>"

 Kuizvinopouncruil ynusepcumem umenu Kopxwim ama,
Pecnybnuxa Kazaxcman, 2. Kvizvinopoa
2)Kemuicyckuii ynusepcumem umenu M. Kancyeypoaa,
Pecnybnuxa Kaszaxcman, e. Tanovikopean
“e-mail: puntik_92@mail.ru, angisin_@mail.ru, samal2903@bk.ru

Annomayus. Bredpenue uHHOBAYUOHHBIX MEXHONIOULL SGNAEMCSL KIIOYEEbIM (PAKMOPOM NOBIUEHUS. KAYeCmed
06pasosanust 8 cogpemMeHHoM obpazosamenvHom npoyecce. Llenv ucciedoeanus — uzyyumos U HPOAHANUIUPOSAND
npuMmeHeHue HeUPOHHLIX cemell 8 NPenooasanuu U3UKU 6 8blCUlUX yueOHbix 3asedenusix. OCHOGHOe HUMANUE YOeTAemCs
ananuzy s¢pexmusHocmu u ROMEHYUATLHLIX NPEUMVIYECIE UCNOTb306AHUSL COBPEMEHHBIX MEXHON0ULL UCKYCCMBEHHO20
unmennexma (MH) onsn cosepuencmseosanus npoyecca ooyuenus. B ucciedosanuu ucnonn308anucy pasiuyHie no0xoobl
K NPUMEHEHUIO HEUPOHHbIX cemell Ol CO30aHUsi a0anmueHblX 00PA306aMENbHbIX CUCMEM, NEePCOHATUUPOBAHHBIX
npospamm 0oyueHus u eupmyanbHuix aabopamopuii. Ocoboe sHuMaHue YOeaeHo GIUSHUIO IMUX MEXHOIOUL HA Y4eOHYIO
ycnegaemocms CmMyOeHmos, UX BOGIEYEHHOCb 6 00pPA308AMENbHYIN NPOYECC U NOHUMAHUE CNONCHBIX (DUIUYECKUX
nouamui. Memoodoaozusi uccredosanus  eKkmoYaem 0030p  Cywecmeylowel  aumepamypbl, IKCHEPUMEHMbL  C
UCNONb308AHUEM HEUPOHHBIX cemell 8 Y4eOHOM npoyecce U ONpoc CMyO0eHmos u npenoodasameinei. B xooe sxcnepumenmos
UCNONB308ANUCH PA3TUYHBIE MOOETU HEUPOHHBIX cemell, a umenno pexyppenmuvle nevponnvie cemu (RNN) u enyboxkue
netponnvie cemu (DNN), ons pewenus 3a0au npocHO3UpoBaHUs ycneeaemocmu, NepCoOHAIUUPOBAHHO20 0DYYEeHUs U
ABMOMAMUYECKO20 CO30aHUs Y4eOHbIX Mamepuanos. Pesymbmamul uccrnedoéanus noxaszvleéaiom, 4mo HpuUMeHeHue
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HEUPOHHbIX cemell 6 NPenodaaHuu (HUIUKU MONCEM SHAUUMETLHO NOBBICUNb KAYeCMB0 00yUeHUs, ChOCODCMBO8ANb
UHOUBUOYATILHOMY HOOX00Y K KANICOOMY CIYyOeHmy u obie2yums pymunHbvle 3a0aqu npenodasameneu. bonree moeo, UM
CNOCODEH CMUMYIUPOSAms UHMEpPeC CMYOeHmMo8 K U3VUEHUI) (DU3UKU U CMECHbIX OUCYUnIuH O1azodaps ceoetl
UHMEPAKMUGHOCU U A0ANMUGHOCHU 6 00PA308aMeNbHOM npoyecce. Bredpenue netiponnvix cemetl ¢ npenodasanue
QUBUKU 6 BbICUIUX YUEOHBIX 3A6e0eHUsX NPedCmasisiem coOoll NEPCneKmMUGHoOe HanpaesileHue, mpebyujee OaIbHeue20
U3BYHEHUs. U PAZGUMUSL.

Knrouesvte cnosa: weiiponnvle cemu, npoyecc, aouabamuieckuil npoyecc, sUpmyanivHas 1abopamopus,
OKCIEPUMEHIM, MEXHOL02USA, NPOSHOZUPOBAHUE, UCKYCCBEHHBI UHMELCK.
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